ত্রিমাত্রিক আয়তাকার বিস্তারে ভেক্টরের বিভাজন

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা - পদার্থবিজ্ঞান – ১ম পত্র | NCTB BOOK

     একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ করতে গিয়ে আমরা কেবল ত্রিমাত্রিক আয়তাকার বিস্তারের ভেক্টরের বিভাজন বিবেচনা করব।

ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থায় কোনো অবস্থান ভেক্টরকে নিম্নলিখিত উপায়ে লেখা যায় যা ত্রিমাত্রিক আয়তাকার বিস্তারের ভেক্টরের বিভাজন হিসেবে বিবেচিত হয়।

r=i^ x +j^ y +k^z

  এখানে P-এর অবস্থানাঙ্ক (x,y,z)

     ধরা যাক, পরস্পর সমকোণে অবস্থিত OX, OYOZ সরলরেখা তিনটি যথাক্রমে X Y Z অক্ষ নির্দেশ করছে।চিত্র ২:২১]। OP রেখাটি এই অক্ষ ব্যবস্থায় r মানের একটি ভেক্টর রাশি r নির্দেশ করছে।

আরও মনে করি OP ভেক্টরের শীর্ষবিন্দু P-এর স্থানাঙ্ক (x,y,z) এবং ধনাত্মক X, Y ও Z অক্ষে একক ভেক্টর রাশি যথাক্রমে i^,j^,k^। PN রেখাটি হলো XY সমতলের উপর এবং NQ রেখাটি হলো OX-এর উপর লম্ব।

চিত্র :২.২১

  চিত্র হতে ভেক্টর যোগের নিয়ম অনুসারে পাই,

OP=ON+NPON=OQ+QNOP=OQ+QN+NP

কিন্তু OQ=xi^,OP=yj^,OP=,OP=zk^ 

:- r=xi^+yj^+zk^

   এখানে x y ও z হলো যথাক্রমে X, Y ও Z অক্ষ বরাবরr   ভেক্টরের উপাংশের মান এবংr হলো ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থার অবস্থান ভেক্টর।

ভেক্টরের মান

চিত্র ২.২১ হতে, OP2 = ON2 + NP2 এবং ON2 = OQ2 + QN2

  OP2 = OQ2 + QN2 + NP2 বা, r2 = x2 + y2 + z2

:- r^=rr=xi^+yj^+zk^x2+y2+z2 .. (2.17)

Content added || updated By
Promotion